Answer:
The water level will drop by about 1.24 cm in 1 day.
Explanation:
Here Mass flux of water vapour is given as
[tex]j_{H_2O}=\frac{D}{l} \bigtriangleup c[/tex]
where
[tex]\bigtriangleup c= \frac{P_{sat}-P_a}{RT}[/tex]
In this
By substituting values in the equation
[tex]\bigtriangleup c= \frac{P_{sat}-P_a}{RT} \\ \bigtriangleup c= \frac{P_{sat}-0.5P_{sat}}{RT} \\ \bigtriangleup c= \frac{0.5P_{sat}}{RT} \\ \bigtriangleup c= \frac{0.5 \times 2.34}{8.314 \times 293} \\\bigtriangleup c= 0.48 mol/m^3[/tex]
Converting [tex]\bigtriangleup c[/tex] into [tex]cm^3/cm^3[/tex]
As 1 mole of water 18 [tex]cm^3[/tex] so
[tex]\bigtriangleup c= 0.48 mol/m^3 \\ \bigtriangleup c= 0.48 \times 18 \times 10^{-6} cm^3/cm^3 \\ \bigtriangleup c= 8.64 \times 10^{-6} cm^3/cm^3[/tex]
Putting this in the equation of mass flux equation gives
[tex]j_{H_2O}=\frac{D}{l} \bigtriangleup c \\ j_{H_2O}=\frac{0.25}{0.15} \times 8.64 \times 10^{-6} \\ j_{H_2O}=14.4 \times 10^{-6} cm/s[/tex]
For calculation of water level drop in a day, converting mass flux as
[tex]j_{H_2O}=14.4 \times 10^{-6} \times 24 \times 3600 cm/day\\ j_{H_2O}=1.24 cm/day[/tex]
So the water level will drop by about 1.24 cm in 1 day.